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Decode-MOT: How Can We Hurdle Frames to Go
Beyond Tracking-by-Detection?

Seong-Ho Lee , Dae-Hyeon Park , and Seung-Hwan Bae , Member, IEEE

Abstract— The speed of tracking-by-detection (TBD) greatly
depends on the number of running a detector because the
detection is the most expensive operation in TBD. In many
practical cases, multi-object tracking (MOT) can be, however,
achieved based tracking-by-motion (TBM) only. This is a possible
solution without much loss of MOT accuracy when the variations
of object cardinality and motions are not much within consecutive
frames. Therefore, the MOT problem can be transformed to find
the best TBD and TBM mechanism. To achieve it, we propose
a novel decision coordinator for MOT (Decode-MOT) which can
determine the best TBD/TBM mechanism according to scene and
tracking contexts. In specific, our Decode-MOT learns tracking
and scene contextual similarities between frames. Because the
contextual similarities can vary significantly according to the used
trackers and tracking scenes, we learn the Decode-MOT via self-
supervision. The evaluation results on MOT challenge datasets
prove that our method can boost the tracking speed greatly while
keeping the state-of-the-art MOT accuracy. Our code will be
available at https://github.com/reussite-cv/Decode-MOT.

Index Terms— Multi-object Tracking, tracking-by-detection,
tracking-by-motion, scene and tracking contextual learning, hier-
archical association.

I. INTRODUCTION

TRACKING-BY-DETECTION [1], [2], [3], [4] is still
a dominant paradigm in multi-object tracking (MOT).

Basically, it builds object tracks by using temporal local and
global associations between detections. Therefore, exploiting
outputs of an accurate detector improves the MOT accuracy
significantly due to the reduction of the uncertainty for possi-
ble object locations. The recent advance of deep convolutional
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Fig. 1. Accuracy and speed of the recent methods on the MOTChallenge
dataset.

detectors [5], [6], [7], [8], [9], [10] also contributes to boosting
the accuracy of the modern MOT methods [2], [3], [11], [12],
[13]. However, employing high-accurate detectors degrades
the overall tracking speed (including the detection latency) in
return.

For addressing this, detectors [14], [15] with light ConvNets
can be used for MOT [2], [3], [16]. However, the compu-
tational cost for detection is much costly compared to the
association. This means that the total MOT speed is affected
the most by a detector in the tracking-by-detection approach.

However, we argue that it is not necessary to run the costly
detector over whole frames. Tracking at a frame could be
achieved well by tracking-by-motion (TBM) which predicts
tracked motions at the current frame. In addition, we find
that the frame to be possible of the detection-skipping has
similar contexts with nearby frames in general. In other
words, the variations of tracking contexts and scene context
are not much. Therefore, we can localize object tracks at
this frame by performing TBM approach. As a result, the
overall tracking speed can be enhanced more as the usage
of a detector becomes less. To this end, we can adopt the
simple approach which alternates between TBD and TBM
mechanism with a certain interval (i.e. uniform sampling on
frame domain) [17], [18]. However, finding the optimal value
of the interval is tricky since this interval can be different even
within a sequence. For instance, the interval should be lower
when the motion variations of objects increase more or the
tracking quality becomes lower. Therefore, our work aims at
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seeking the best sweet spot of a tracker for real-time MOT,
whereas minimizing the reduction of MOT accuracy.

For achieving this, some recent works [19], [20] compare
the tracking boxes between previous and current frames, and
perform the TBD when the mismatch between boxes increases.
However, we assert that the object cardinality should be
considered when evaluating the tracking contextual similar-
ity since the track initialization and termination cannot be
achieved without TBD. In addition, contextual variation of a
whole scene should be evaluated for capturing the variations of
object appearances or other occluders. Therefore, comparing
tracking boxes or RoI features within object regions [19], [20],
[21] is not sufficient to determine TBD and TBM mechanism.

To resolve this, our core idea is to measure the dissimilarity
of Conv feature maps between the current and the key (i.e.
the most recent frame using TBD) frames. For learning scene
contextual similarity between frames, we propose a novel
self-attention learning with the online updated Conv features.
Additionally, we present tracking contextual measures that can
evaluate the motion and cardinality similarities with tracking
results inferred at key and current frames.

Based on the scene and tracking context learning, we design
a decision coordinator for MOT (Decode-MOT). More con-
cretely, we feed the scene attention features to a decision
coordinator as inputs. However, the supervision for training
our Decode-MOT is not practical because the GT is not
available. In some senses, making GT could be meaningless
since it relies on the performance of a tracker and a detector.
We, therefore, train our Decode-MOT via self-supervision.
We present pseudo labeling that represents TBD or TBM
actions. Then, we define a new decision loss with the motion
and cardinality similarities for TBD and TBM results. By min-
imizing this loss, we can train the decision coordinator to
make it predict the best decision for TBM or TBD at each
frame. The main benefit of our self-supervised learning, this
mechanism can be determined adaptively according to the
performance of the used detector and tracker. It indicates
that our self-supervised learning can be applied to other TBD
methods [1], [3], [16], [22].

For robust Decode-MOT, we present a hierarchical con-
fidence association between detections and tracks. In this
hierarchical association, we consider confidences of tracks and
detections and associate them hierarchically by reducing the
ambiguity of possible matching combinations gradually.

To sum up, the main contributions of this paper are
(i) proposition of Decode-MOT that can determine the best
TBD or TBM mechanism for real-time and high-accurate
tracking; (ii) proposition of a new contextual learning in order
to measure scene and tracking contextual similarities between
different frames; (iii) proposition of a self-supervision method
based on the scene and tracking contexts; (iv) proposition
of a hierarchical confidence association which can reduce
association ambiguity gradually. By applying our proposed
methods, we achieve about 1.5× faster speed while reducing
MOTA by 4.3%. We have also provided extensive ablation
studies and comparisons over the state-of-the-art MOT meth-
ods on the MOT benchmark dataset [23]. Our Decode-MOT
achieves state-of-the-arts 73.2% MOTA and 21.6Hz speed on

the MOT17 test set by using a single Titan Xp. As shown in
Fig. 1, recent trackers focus on improving the MOT speed
by modifying its architectures [3], [16]. Thus, the overall
model complexity can be reduced. However, our method
aims to boost the MOT speed by determining the optimal
tracking mechanism (i.e. TBM or TBD). It implies that the
algorithm complexity of the MOT system can be downsized
since the total number of operations of running a detector gets
decreased. In our experiment in Fig. 1 and Table VI, we prove
that our Decode-MOT can provide the higher gains for both
accuracy and speed than recent MOT methods. As shown in
Fig. 1, we observe that applying the simple approach, which
alternates TBD and TBM with a fixed interval, for other SOTA
trackers [3], [16] can decrease MOT accuracies easily because
the optimal key intervals can be different for the performance
of a tracker. In addition, the performance degradation of our
Decode-MOT is much lower than other methods as shown in
Fig. 1 and Table I as TDR decreases.

II. RELATED WORK

We discuss previous works on multi-object tracking, effi-
cient object tracking, and self-supervised learning which are
related to our work.

A. Multi-Object Tracking

The goal of object tracking is to track multiple objects
and build its (or their) trajectories. The multi-object tracking
approaches can be categorized into tracking-by-detection and
tracking-by-motion according to the use or not of a detector.
In this section, we discuss the details of both methods.

1) Tracking-by-Detection: The tracking-by-detection
approach [1], [2], [3], [13], [22], [24], [25], [26], [27] first
determines possible object locations within an image by
applying a detector, and then associates detections between
consecutive frames to build a track with distinguishable
identities (IDs). The TBD approach can be categorized into
separate detection and embedding (SDE) [1], [5], [11] and
joint detection and embedding (JDE) [3], [13], [16], [25]. The
main difference between both methods is whether detection
and association tasks are handled in a common network (or
backbone). For solving both tasks, the SDE methods use
different networks trained independently. On the other hand,
the JDE methods attach detection and association heads to a
shared single network, and train them using joint learning.
Therefore, the JDE improves tracking speed by sharing
low-level features. However, both methods leverage a detector
for whole frames. Thus, the detection process largely affects
the overall MOT complexity still.

On the other hand, as an effort to improve the accuracy, the
self-attention mechanism [28], [29] are used. In specific, [22],
[30], [31], [32] use the attention for improving association.
We also use the attention, but we learn the attention features
online by comparing features from different frames.

2) Tracking-by-Motion: The tracking-by-motion approach
estimates the object states at the current frame based on the
prediction of its tracked motions up to a certain previous
frame. Therefore, this is much faster than TBD due to the
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absence of a costly detection process. However, it is not
possible for applying TBM over the whole frames since new
track initialization or track recovery due to occlusions can
not be achieved without detections. Therefore, it is crucial
to determine a key frame needed to run a detector. To this
end, [19], [20], [21], [33] choose the key frame by considering
object regions and region features. Specifically, [21] deter-
mines the key frame by computing an object size and motion
differences between consecutive frames. References [20] and
[33] formulate the task into a reinforcement learning problem
and find the key frame based on the dissimilarity of object
localization. Unfortunately, these methods do not consider the
cardinality variation between frames. Therefore, we evaluate
tracking contextual similarity between frames in consideration
of motion and cardinality variations together. As a result,
our method can determine the best key frame by using the
integrated contexts. To show the effects of using both contexts,
we provide the ablation study of our Decode-MOT by using
those differently.

On the other hand, in the respect of precise predictions
of object motions during TBM, many recent visual object-
tracking (VOT) methods [34], [35], [36], [37], [38], [39]
focused on learning stronger and discriminative object fea-
tures. For example, [39] formulates the task into a target
matching problem within a correlation feature map of the
Siamese network which is generated by convolving the search
region feature map with the object region of interest (RoI)
feature. Reference [38] exploits self-attention mechanism [28]
in order to learn discriminative features. Reference [37] intro-
duces the quadruplet network [40] into visual object tracking
for the same purpose. Albeit we use the discriminative fea-
ture learning with the attention methods between consecutive
feature maps as done in these VOT methods, our approach is
more focused on improving total tracking speed rather than
accuracy by using the discriminative feature for determining
the MOT mechanism.

B. Efficient Object Tracking

In recent years, various efficient tracking methods have
been proposed for embedding trackers on real-time applica-
tions. Reference [41] shows the possibility of constructing
a lightweight tracker by using neural architecture search.
Shen et al. [42] exploits the knowledge distillation [43] in
order to learn the lightweight tracker from the more accurate
but heavier tracker. Wang et al. [3] integrates a detection
model and an appearance embedding model by sharing the
same set of low-level features for avoiding the costly feature
re-extraction. Reference [16] learns low dimensional Re-ID
features to improve a model inference speed. Note that these
methods can improve the tracking speed by reducing the
model complexity of trackers. On the other hand, our method
rather focuses on reducing the MOT algorithm complexity at
a system level by minimizing the operations of running TBD
as shown in Fig. 1. Therefore, the distinct benefit is that the
conventional methods of reducing model complexity can be
also compatible with our method.

C. Self-Supervised Learning

Self-supervised learning (SSL) [44], [45] generates pseudo
labels for learning a model with unlabeled data. There
are some studies to improve the generalization ability of
MOT models using SSL. Reference [16] improves the re-
identification (Re-ID) generalization with human detection
datasets [46]. Reference [22] exploits a self-supervised loss
in order to apply constraints of the spatial correlation learn-
ing [47]. Reference [48] generates pseudo labels using SORT
[49] for training an unsupervised Re-ID model. We also
leverage SSL learning for MOT. However, our learning method
aims at improving the tracking speed as well as the model
generalization.

III. DECISION COORDINATOR FOR MOT (DECODE-MOT)

Figure 2 and Figure 4 show an overview of our decision
coordinator for MOT (Decode-MOT). It consists mainly of
the decision coordinator, the scene and tracking contextual
learning, and the hierarchical confidence association. We first
discuss TBD and TBM, and then present details of each
method.

A. Tracking-by-Detection (TBD) and Tracking-by-Motion
(TBM)

Given a sequence with N frames, we apply a detector D
for the image It to generate a set of detection boxes D(It ) =

Dt = {di
t , yi

t }
|Dt |
i=1 , where di

t is a bounding box for an object i ,
and |Dt | is the number of detected objects at frame t . We then
formulate a tracking-by-detection problem to estimate a set of
tracks Tt = {d̂ j

t , ŷ j
t }

|Tt |
j=1 at the current frame t as T (T D)

t =

T (T1:t−1,Dt ), where d̂ j
t and ŷ j

t are a refined bounding box
by tracking and track identity label for a track j . T and |Tt |

are a tracker and the number of tracks at frame t .
When predicting Tt based on the previous knowledge T1:t−1

up to frame t − 1 only, we consider this as the TBM problem
and formulate it as T (T M)

t = T (T1:t−1). In general, this prob-
lem can be solved by the motion prediction based on tracking
results T1:t−1 up to frame t − 1. In our case, we use simple
Kalman filtering [50]. In most cases, the quality of T (T D)

t is
better than T (T M)

t because of the more accurate association.
On the other hand, the tracking complexity for T (T D)

t is
higher than that of T (T M)

t . Therefore, we need to find the
TBD and TBM mechanism for reducing tracking complexity
while keeping the accuracy. As mentioned, to achieve this,
our core idea is to measure the tracking and scene contextual
similarity extracted at current image frame t and previous
frames 1 : t − 1.

To find optimal the mechanism for whole frames, we assume
that T (T M) at frame t is possible if T (T D)

t ≈ T (T M)
t . In many

cases, this assumption is feasible when the tracking (i.e. object
motions and cardinality) and scene (i.e. image feature) con-
textual information are similar between consecutive frames.
Therefore, we present methodologies to learn and measure the
contextual similarities. Based on those contextual similarities,
we learn a decision coordinator and determine TBD and TBM
operation per frame using the learned coordinator.
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Fig. 2. The overall architecture of our Decode-MOT. It consists of (a) a decision coordinator of predicting the probability of TBM, (b) a scene context
representation module of evaluating the long-term attention between different frames, and (c) a hierarchical association of linking between detections and
tracks progressively.

B. Decision Coordinator

In the decision coordinator shown in Fig. 2 (a), we first
calculate the dissimilarity of feature maps Pt ∈ RC×H×W

by subtracting current and key frame features Pt =

Ft − Fke . Let denote r(t) = 1 when a detector runs
at frame t . Otherwise, r(t) = 0. We define K ={
k j |1 ≤ ks ≤ k j ≤ ke ≤ t, r(k j ) = 1

}
as a set of time stamps

of running the detector up to frame t . ks and ke are the start-
and end-stamp of running the detector. Then, we perform
a matrix multiplication between Pt and an attention of the
scene context A⋆t for emphasizing the dissimilarity further
which is discussed in Sec. III-C. After multiplying them,
we perform element-wise summation between the multiplied
feature and Pt to obtain the refined feature P⋆t . Subsequently,
the decision head outputs the decision coordination probability
f (st ) with the refined P⋆t as its input. To train the coordinator,
we present a decision loss in consideration of tracking contexts
as in Sec. IV. Because the coordinator determines TBD or
TBM based on scene and tracking contextual similarities, our
Decode-MOT is likely to operate TBM as f (st ) becomes
higher.

In detail, for the decision head, we feed the refined feature
P⋆t to 3 × 3, and then 1 × 1 ConvBlocks. Here, each block
contains a convolution, batch normalization, and Leaky ReLU
activation (α = 0.01) layers. The output channel sizes of 3 ×

3 and 1×1 convolution layers are C and 1, respectively. After
consecutive convolutions, we flatten the feature map into a
feature vector with H × W dimension and then apply 3 fully
connected layers of 64, 64, and 1 neurons in order to output st .
Finally, we can calculate the decision probability f (st ) with
a sigmoid function f (·).

C. Scene Context Representation With Long-Term Attention

The scene context learning is basically achieved by learning
discrepancy between Ft and Fke at current t and key ke (i.e. the
most recent frame using a detector). For representing the fea-
ture discrepancy more, we present an online attention learning
during MOT. The overall attention learning process includes
short-term and long-term attention learning as depicted in
Fig. 2 (b). In short-term attention learning, we extract the
embedding features zt and zke by feeding Ft and Fke frames to
a shared encoder, and then correlate them to learn the channel
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attention At . Thus, we can capture cardinality and motion
variations from this short-term attention learning. In addition,
we aim at learning a long-term temporal dependency for the
variations of channel attentions. To this end, we aggregate and
update short-term channel attentions up to current frame t , and
self-correlate the aggregated attentions to generate the stronger
attention A⋆t . We use A⋆t to make Pt more meaningful semantic
representation.

1) Short-Term Attention: We feed Ft into an encoder in
order to extract a latent vector zt ∈ RC . We implement
the encoder with two 3 × 3 ConvBlocks, an average pooling
layer, and a max pooling layer. Each ConvBlock contains
a 3 × 3 convolution layer, a ReLU activation layer, and a
2×2 max-pooling layer to reduce the spatial resolution of the
feature map for the efficient attention learning. Then, we feed
the reduced feature map into an average and a max pooling
layer independently in order to aggregate spatial information.
Subsequently, the encoder can output the latent vector zt by
performing element-wise summation between two aggregated
vectors. Similarly, we extract the key frame latent vector zke

by propagating Fke to the same shared encoder. By multiplying
zt with the transposed zke , we can learn a short-term channel
attention At ∈ RC×C .

2) Long-Term Attention: From the short-term attention net-
work, we can generate a channel attention map At per frame.
For learning long-term variation of the attention features up
to the current frame, we present long-term attention learning.
When r(t) = 1, we can update the set K (with |K| time stamps
for detection) by adding t into this (ke = t). We then update
a temporal attention buffer Bt = {Ak |k ∈ {k|K|−Q+1, . . . , t}}
having Q attentions by adding the new At and deleting the
oldest one within Bt . Therefore, Bt contains all the short-term
attentions from the k|K|−Q+1 to current t frames. In addition,
we can represent Bt as Bt ∈ RQ×C×C by concatenating each
attention Ak along the temporal dimension. Then, we can
reshape Bt to make its dimension as Q × C2. To obtain
a temporal attention Ot ∈ RQ×Q , we perform a matrix
multiplication between Bt and the transpose of Bt . We then
apply a softmax function for the Ot along the channel axis for
normalization. Subsequently, we perform a matrix multiplica-
tion between Bt , Ot , and apply a 1 × 1 convolution layer and
a softmax function in order for temporal feature aggregation.
As a result, we can generate a long-term attention A⋆t ∈ RC×C .
By using A⋆t , we can learn a channel weighted feature P⋆t as
follows:

P⋆t = Pt + γ (A⋆t ⊗ Pt ), (1)

where ⊗ is a matrix multiplication. γ is a learnable weight
parameter, which is initialized to 0. Note that the temporal
buffer Bt is updated in online since a temporal window of the
buffer also moves for the next frame tracking. Therefore, the
long-term attention A⋆t can be updated in online.

D. Hierarchical Confidence Association

For associating tracks T1:t with detections D1:t in Decode-
MOT, we present the hierarchical association using confi-
dences of tracks and detections shown in Fig. 2 (d). In our

Fig. 3. An illustration of affinity models consisting of the appearance,
motion and shape model. We exploit them when associating between tracks
and detections.

case, we consider a detection confidence as a classification
probability of the detection box from a detector and track
confidence as the confidence of the associated detection. When
a track is not associated, its confidence gradually decreases
with a certain scaling factor ϕ (We set 0.9 in our experiment.).
Therefore, a track confidence con f (T i

t ) can be defined as
follows:

con f (T i
t ) =

{
con f (Di∗

t ), s.t.T i
t ∈ T m

t
ϕ · con f (T i

t−1), s.t. T i
t ∈ T u

t
, (2)

where con f (Di∗
t ) is a detection confidence associated with the

track T i
t−1 from a used detector. T m

t and T u
t are matched and

unmatched track sets at frame t , respectively.
In order to compute the similarity between tracks Tt−1 and

detections Dt , we use appearance, motion, and shape models
denoted as Aapp, Amot , and Ashape, respectively, as shown
in Fig. 3. As an appearance affinity model, we use 128-
dimensional embedding vectors for each RoI region from an
appearance feature network consisting of a 3 × 3 and an
1 × 1 convolution and a ReLU activation layers. To evaluate
appearance affinity, we use the cosine distance. To evaluate
motion affinity, we compute the Mahalanobis distance between
the center coordinate of a detection box and refined position
of a track. For the shape affinity, we calculate IoU distance
between bounding boxes. Subsequently, we apply the weighted
summation for all affinity models in order to calculate the
total affinity between a track and detection Atot (T i

t−1,D
j
t ) as

follows:

Atot
= κapp

·Aapp
+ κmot

·Amot
+ κshape

·Ashape, (3)

where weight parameters for appearance, motion, and shape
affinity models are denoted as κapp, κmot , and κshape, respec-
tively. We set these hyper parameter values experimentally
as described in Sec. V-A. Note that we apply the same
values for all our experiments. T i

t−1 and D j
t are a track

and detection, respectively. i, j are indexes of tracks and
detections. In Eq. (3), (T i

t−1,D
j
t ) is omitted for the simplicity.

For hierarchical association, we first categorize tracks Tt−1
and detections Dt in terms of their confidences con f (·). If their
confidences are above a certain threshold θcon f , we regard
them as high confidence tracks T high

t−1 and detections Dhigh
t .

Otherwise, low confidence tracks T low
t−1 and detections Dlow

t .
Here, in case of detections, we discard detections whose
confidence is less than ψ ·θcon f in order to reduce the number
of false detections. We set ψ to 0.8 in our experiments.

After then, we perform sequential associations with those
affinity models as follows:
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Algorithm 1 Hierarchical Confidence Association

(H1) association: We first associate between tracks T high
t−1 and

detections Dhigh
t with high confidences using Atot because

these are reliable matching pairs. To this end, we compute an
affinity matrix Mt whose elements are the total affinity scores
between tracks and detections as follows:

Mt = [−Ai j ]
|T high

t−1 |×|Dhigh
t |

, (4)

where |T high
t−1 | and |Dhigh

t | are object cardinality of T high
t−1

and Dhigh
t , respectively. Then, we determine optimal matching

pairs in Mt using the Hungarian algorithm [51] such that the
total affinity score is maximized. By exploiting this associa-
tion, we can reduce the association ambiguity since reliable
objects are associated without the interference of unreliable
objects. Subsequently, we can output T m1

t−1,D
m1
t , T u1

t−1 and
Du1

t which are matched tracks and detections, and unmatched
tracks and detections in (H1) association, respectively. T u1

t−1
and Du1

t are reused in (H2) association.
(H2) association: After reducing some association ambiguity
in (H1), we associate the remaining tracks T u1

t−1 with detections
having high confidence Du1

t . Here, we merge T u1
t−1 with T low

t−1
in order to consider low confidence tracks together. Different
from (H1), we only use the shape affinity Ashape since tracks
with low confidences usually have contaminated appearance
and motions. For finding optimal pairs, we generate Mt as
follows:

Mt = [−Ashape
i j ]

|T u1
t−1|×|Du1

t |
(5)

After finding optimal pairs, we output T m2
t−1,D

m2
t , T u2

t−1 and
Du2

t in (H2) association. T u2
t−1 and Du2

t are reused in (H3)
association.
(H3) association: we then associate between all tracks and
detections in order to associate low confidence detections
Dlow

t . To this end, we combine Du2
t with Dlow

t . We also
find optimal pairs after calculating Mt whose elements are

calculated using the shape model only as follows:

Mt = [−Ashape
i j ]

|T u2
t−1|×|Du2

t |
(6)

Then, we output T m3
t−1,D

m3
t , T u3

t−1 and Du3
t in (H3)

association. After these associations, we can update Tt
using matched tracks/detections (T m1

t−1, Dm1
t ), (T m2

t−1, Dm2
t ),

(T m3
t−1, Dm3

t ). We also initialize new tracks using unmatched
high-confidence detections Du3

t \Dlow
t as mentioned in

Sec. V-A. We summarize our proposed association method as
shown in Algorithm 1. Refer to our supplementary material
for a more detailed association algorithm table.

IV. DECODE-MOT TRAINING VIA SELF-SUPERVISION

In order to train the Decode-MOT, we propose to learn the
Decode-MOT via self-supervision due to following reasons:
(1) There is a no available public GT or any guideline
for TBD and TBM scheduling. (2) Generating the GT is
also challenging due to the strong performance dependency
between a tracker and a detector. (3) It is tricky to generate
GT fitting a certain performance point because the accuracy
and speed are always the trade-off relationship.

Therefore, we generate pseudo labels to represent actions
of running TBD or TBM. Our idea of generating the pseudo
labels is to exploit the tracking contextual similarity between
previous key and current frames. In particular, as shown in
Fig. 4, we measure the contextual similarities for cardinality
and motion between them. As a result, our self-supervision
method can generate pseudo labels adaptively depending on
the tracking contextual similarities.

A. Tracking Contextual Similarity

1) Cardinality Similarity: We first measure the cardinality
similarity between the tracking results from T (T D)

t and T (T M)
t .

The reason of evaluating this similarity is that the new track
initialization and track termination cannot be achieved by the
tracking-by-motion. Therefore, we compare the track cardi-
nality between them, and can define the cardinality similarity
Scard as follows:

Scard(T (T D)
t , T (T M)

t ) = min
(
−

1
e · ln

(
1 − R(T (T D)

t , T (T M)
t )

)
, 1

)
, (7)

where R(T (T D)
t , T (T M)

t ) is the object cardinality ratio between
T (T D)

t and T (T M)
t . For normalizing the ratio within the interval

[0, 1], we divide each cardinality with the other cardinal-
ity, and find the minimum score as R(T (T D)

t , T (T M)
t ) =

min
(

|T (T D)
t |

|T (T M)
t |

,
|T (T M)

t |

|T (T D)
t |

)
In Eq. (7), Scard = 1 means that they

produce the same number of tracks. This indicates that track
initialization and termination events are not likely to occur
at frame t . Thus, the TM is encouraged as Scard increases.
Since the cardinality similarity does not consider track IDs to
identify the new track initialization and termination, it seems
to be difficult to address some cases (e.g. when one pedestrian
disappears and another one appears at the same frame).
To address this, we exploit the motion similarity together.
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Fig. 4. The proposed tracking contextual learning is shown. We exploit the tracking contextual similarity measures between T (T D)
t and T (T M)

t for learning
our Decode-MOT via self-supervision. Using the cardinality similarity we can capture the variation of the track cardinality, but using the motion similarity
evaluate the difference of their the localization qualities. We assume that TBD is needed at a frame when these similarities become low.

2) Motion Similarity: In order to evaluate mismatches
between refined bounding boxes d̂t between T (T D)

t and
T (T M)

t , we define the motion similarity. Once corresponding
box pairs between them are given, this similarity can be
evaluated by using the IoU (intersection over union) measure.
Therefore, we can define the motion similarity Smot as follows:

Smot (T (T D)
t , T (T M)

t ) =
1

|T ∗
t |

∑|T ∗
t |

(ik , jk )k=1
I OU

(
d̂(T D),ik

t , d̂(T M), jk
t

)
, (8)

where |T ∗
t | is the cardinality of matched pairs between

T (T D)
t and T (T M)

t . To determine the correspondence (ik, jk),
we define a bigraph whose bounding boxes of T (T D)

t and
T (T M)

t configures two disjoint and independent sets, and
each node for T (T D)

t are connected with every nodes for
T (T M)

t . The edge weight is evaluated by using the IoU score
between connected nodes. The maximum-weight matching
pairs of this graph can be determined optimally by Hungarian
algorithm [51]. Then. we evaluate Smot by computing the aver-
aged IoU scores of the matched pairs. We discard a matched
one whose IoU score is less than 0.5. Note that leveraging
our motion similarity together could address the track ID
issue when the regions of track initialization and termination
regions are inconsistent. This is because the motion similarity
is evaluated for the matched tracks T (T D)

t and T (T M)
t only

(i.e. considered as the same track IDs). Here, for determining
the optimal matching pair, we use the bipartite matching
algorithm [51].

B. Self-Learning With Tracking Contexts

For training a decision coordinator via self-supervision,
we generate pseudo GT labels G = {Gt }

N
t=1. Given a sequence

with N frames as a training set, we generate pseudo labels
at each frame by using our online tracker T and detector D.
Then, we can generate T (T D)

t and T (T M)
t per frame. Each

label Gt at frame t is a binary label, and represents tracking-
by-motion (TM=1) or tracking-by-detection (TD=0) actions.
We then evaluate the similarity scores Scard Eq. (7) and Smot
Eq. (8) by comparing T (T D)

t and T (T M)
t . We can define Gt as

follows:

Gt =

{
1, s.t. Scard · Smot ≥ θps
0, s.t. Scard · Smot < θps

, (9)

where, θps is a pseudo labeling threshold. We set it experimen-
tally based on Fig. 5. The meaning behind of each constraint is:

when Scard · Smot ≥ θps , the tracking contexts of both trackers
T (T D)

t and T (T M)
t are similar. Therefore, we encourage T (T M)

t
at this frame. On the other hand, we encourage T (T D)

t since
the tracking contextual similarity becomes lower due to motion
and/or cardinality mismatches.

With the pseudo labeled Gt , we present a decision loss
Ldecision using the binary cross entropy for learning our
decision coordinator as follows:

Ldecision = −Gt log ( f (st ))− (1 − Gt ) log (1− f (st )) . (10)

V. EXPERIMENTS

In this section, we conduct extensive ablation studies and
comparisons over the state-of-the-art (SOTA) methods in order
to prove the effects of our method.

Dataset: We use MOTChallenge dataset [23] which contains
7 sequences captured from dynamic or static cameras with
14∼30 Hz frame rates. We exploit the MOT17 training set for
training Decode-MOT. For comparison with SOTA methods,
we train our Decode-MOT on the pedestrian sets1 and evaluate
our tracker on MOT16, MOT17, and MOT20 test sets using
the challenge server. For ablation studies, we use the MOT17
training sets only, and evaluate our methods on the MOT15
training set. Here, we do not evaluate our tracker on the
overlapped sequences within the MOT17 training set.2

Evaluation Metrics: We use the common MOT metrics [57],
[58] as also used in the MOTChallenge: multiple object
tracking accuracy (MOTA ↑), higher order tracking accuracy
(HOTA ↑), ID F1 score (IDF1 ↑), the number of false positives
(FP ↓), the number of false negatives (FN ↓), the number
of identity switches (IDs ↓), the ratio of mostly tracked
trajectories (MT ↑), the ratio of mostly lost trajectories (ML
↓), the number of track fragment (FG ↓), and multi-object
tracking speed (Hz ↑). Here, ↑ and ↓ denote that higher and
lower scores are better MOT results, respectively. In addition,
we evaluate a tracking-by-detection ratio (TDR) by diving the
number of TBD operations with the number of total frames.
As described in Sec. III-A, TDR affects the accuracy and speed
significantly. As TDR increases, the accuracy gets higher, but
the speed slower.

1We use CalTech [52], CityPersons [53], CUHK-SYSU [54], PRW [55],
ETH [56], and MOT17 [23] training sets.

2Venice-2 (=MOT17-02), ADL-Rundle-8 (=MOT17-10), ADL-Rundle-6
(=MOT17-09), ETH-Pedcross2 (=MOT17-05).
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TABLE I
COMPARISON AMONG OUR DECODE-MOT, THE BASELINE WITH THE HIERARCHICAL ASSOCIATION,

AND THE BASELINE TRACKER WITH DIFFERENT TDRS ON MOT15 DATASET.
THE PERCENTAGE IN [·] SHOWS THE SPEED GAIN AND ACCURACY REDUCTION RATES OF EACH TRACKER AS TDR DECREASES

A. Implementation Details

We employ DLA-34 [59] as the backbone network in
Decode-MOT. We then mount the anchor-free detection [25],
appearance feature, decision coordinator head networks on
the shared backbone. The proposed scene contextual learning
network is embedded into the decision coordinator. as shown
in Fig. 2. The networks except for the decision coordinator are
trained in advance. Subsequently, we train our decision coor-
dinator by minimizing Eq. (10) while freezing the pre-trained
networks such as the backbone, detection, and appearance
feature heads. For the scene contextual learning network,
we set the buffer size Q to 4. For hierarchical confidence
association, κapp, κmot , and κshape are set to 0.735, 0.015,
and 0.25, respectively. We use the Adam optimizer with β1 =

0.9 and β2 = 0.999. We train our networks for 30 epochs
with a mini-batch including 6 images from different sequences.
We set a learning rate to 5e-5, and decay it by a factor of
0.1 at 20 epochs. During inference, we determine tracking-by-
detection (TD) or tracking-by-motion (TM) actions per frame
by inferring the output f (st ) of the decision coordinator. When
f (st ) < θdet , we use TD. Otherwise, we use TM. Here,
θdet is a threshold to determine a TD or TM action. In a
TD action, we localize objects with bounding boxes using a
detector and then associate them with existing object tracks.
In a TM action, we only localize tracks by predicting their
motions with Kalman Filtering [50]. To boost total tracking
speed further, we predict a decision score at next frame t+1 by
degrading the f (st ) with a factor ξ (=0.83 in our experiment)
without running the coordinator when f (st ) ≥ θdet as follows:

f (st+1) =

{
ξ · f (st ), s.t. f (st ) ≥ θdet

DM(Fke , Ft ), s.t. f (st ) < θdet
, (11)

In other words, we assume T (T D)
t ≈ T (T M)

t when f (st ) ≥

θdet as mentioned in Sec. III-A. For track initialization, given
non-associated high confidence detections Du3

t \Dlow
t with any

existing tracks each frame, we initialize new tracks when
the detections at frame t are associated with ones at frame

t − 1 by evaluating IoU scores. Note that we do not use non-
associated low-confidence detections for track initialization
since these are highly possible to be false detections. For track
termination, we degrade track confidences when they are not
associated with detections. Then, we eliminate a track when its
confidence becomes less than θterm(=0.5 in our experiments)
in order to reduce false tracks.

We test our Decode-MOT on a PC with i7-8700K CPU
(3.70GHz) and a single Titan Xp (12GiB memory).

B. Ablation Study

1) Decision Coordinator: We compare our Decode-MOT
with the baseline. As a baseline, we eliminate the proposed
decision coordinator and association method from our Decode-
MOT. Instead, we apply a simple method which determines
TBD or TBM using an uniform interval, and the association
method used in CenterTrack [25]. For the uniform interval,
we apply 3 different intervals: #4TD-#1TM (TDR=80%),
#3TD-#1TM (TDR=75%), and #2TD-#1TM (TDR=66.6%).
Here, #TD and #TM are the number of frames applying
the TBD and TBM operations in a series. For our Decode-
MOT, we tune TDRs of the Decode-MOT by changing θdet
to evaluate both trackers with the almost same TDR.

Table I shows detailed comparison results between our
Decode-MOT and the baseline. We observed that the accuracy
gap between Decode-MOT and the baseline becomes larger as
the TDR decreases. Specifically, when comparing results with
TDR=100% and TDR=66% of the Decode-MOT, the speed is
improved by 46.4% while reducing MOTA by 4.3%. However,
in the baseline tracker, its MOTA score is greatly degraded by
8.5%. When comparing both trackers with other TDRs, our
Decode-MOT shows much better accuracy while maintaining
similar speeds. Additionally, we have conducted additional
comparison with the baseline tracker with the hierarchal
association in Table I for showing the effect of our deci-
sion coordinator. Compared to the baseline, our association
method achieves a MOTA gain by 2.4% when TDR=100%.
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TABLE II
EFFECTS OF THE SCENE CONTEXTUAL LEARNING WHEN TDR=52.5%

TABLE III
EFFECTS OF THE TRACKING CONTEXTUAL LEARNING

WHEN TDR=52.5% AND TDR=70.0%

TABLE IV
EFFECTS OF THE HIERARCHICAL CONFIDENCE ASSOCIATION

Remarkably, we observed that our association method provides
better MOTA score gains by 4.4%, 4.8%, and 4.6% when
using an uniform interval for TDR=80.0%, TDR=75.0%,
and TDR=66.6%, respectively. These results mean that our
hierarchical confidence association is effective when operating
tracking-by-motion. When comparing the baseline with our
association method and Decode-MOT, we observed that our
Decode-MOT improves MOTA scores consistently by about
2.2% on average when TBM operates (i.e. TDR=80.0%,
TDR=75.0%, and TDR=66.6%). Furthermore, we observe
that our Decode-MOT shows better MOT speeds despite the
additional computational cost of the decision coordinator when
TDR=75.0% and TDR=66.6%. This is because inaccurate
decision can lead to false positives (e.g. false tracks and
track fragments) which increase the computational cost for
associating tracks and detections. From these results, we verify
that our method can improve both the MOT speed and the
MOTA score when alternating TBD and TBM compared to
the baseline added our association method. Figure 1 shows
more comparison results among recent methods. As shown,
Decode-MOT shows 56.3% and 52.6% MOTA scores when
TDR=49.8% and TDR=46.8%, respectively. Furthermore,
Decode-MOT achieves the much better accuracy scores com-
pared to recent trackers [3], [16]. From these results, we verify
that our method is very effective for boosting the speed while
minimizing MOTA reduction.

2) Scene Contextual Learning: We train and evaluate the
Decode-MOT with different attention methods in Table II:
(A1) does not exploit attentions; (A2) uses short-term attention
only; (A3) uses both short-term and long-term attentions.

TABLE V
COMPARISONS OF DIFFERENT TBM METHODS ON MOT15 TRAINING SET.

THE PERCENTAGE IN [·] SHOWS THE GAIN AS TDR DECREASES

Fig. 5. Comparison of our Decode-MOT with different θps ..

Fig. 6. Sensitivity analysis for θps in terms of TDR and θdet.

Fig. 7. Sensitivity analysis for ξ according to different TDRs. All other
parameter values are fixed.

As shown in Table II, using both attentions (A3) shows better
MOTA scores compared to (A1) and (A2). Also, we find that
the long-term attention is very effective to increase MOTA
with little complexity.

3) Tracking Contextual Learning: In Table III, we perform
the comparisons of our contextual learning methods. (B1)
exploits the cardinality similarity only; (B2) uses the motion
similarity, which is similar to [20] and [21] because its track
action is determined by IOU scores between GT boxes and
tracked boxes; (B3) uses both contextual similarities for track-
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Fig. 8. Comparison of the Decode-MOT with different Q values on static (TUD-Stadtmitte) and dynamic (KITTI-13) sequences.

Fig. 9. Qualitative comparison on static (TUD-Stadtmitte) and dynamic (KITTI-13) sequences: (a) The variation of the decision probability f (st ). (b) The
selected key and current frames at some f (st ) values.

Fig. 10. A failure case: some inaccurate tracking results of our Decode
MOT on MOT16-12 (a) and MOT16-14 (b) sequences. True positives and
false negatives are marked with orange and red boxes, respectively.

ing contextual learning; (B4) uses both contextual similarity
too. However, we develop the motion similarity to use the
object IDs of the ground truth (GT) for the motion similarity
computation. We assign IDs of the GT objects T (GT )

t to T (T D)
t

and T (T M)
t by associating T (GT )

t with T (T D)
t and T (T M)

t using
the Hungarian method with IoU measure. Then, we evaluate
the motion similarity scores for the tracks with the same IDs
of T (T D)

t and T (T M)
t using Eq. (8).

As shown, (B1) and (B3) using the cardinality similarity
show the better MOTA compared to (B2) using the motion
similarity only when TDR=52.5%. It reflects that capturing
the cardinality variation is more crucial for determining TBD

and TBM mechanism. As a result, the FN (i.e. missed tracks)
score dramatically increases (4, 801 → 8, 098) without con-
sidering the cardinality. This verifies that the cardinality is also
needed to be considered when determining key frames (c.f.
[19], [20], [21], [33]). Although (B2) achieves slightly better
scores compared to (B1) when TDR=70.0%, the FN score
of (B2) is still worse than one of (B1). On the other hand,
we note that (B3) using both similarities consistently achieves
the best MOTA score whenever TDR is changed. Although
the direct comparison with the tracker [20], [21] is not made,3

this ablation study indicates that our Decode-MOT with both
contextual similarities could achieve the better scores than
those using the motion similarity only. Also, when comparing
of (B3) and (B4) scores at TDR=70.0%, both trackers achieve
the similar MOTA score. However, for the speed (B4) shows
the better than (B3). It is because that in (B4) the ratio of
mostly tracked trajectories is decreased (63.0% → 60.6%).
We expect that the reduction of the MT score is because the
decision of (B4) is somewhat biased toward the accurate tracks
which can be associated with the GT.

In addition, (B4) shows the lower MOTA score than (B3)
at TDR=52.5%. Furthermore, (B4) shows the lowest ratio of
mostly tracked trajectories among (B1)-(B4). We expect that
the performance degradation of (B4) is due to the overfitting
of the coordinator by too precise association. More concretely,

3Due to the different down-streaming task (i.e. visual object tracking) and
not opened codes to the public.
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TABLE VI
COMPARISON WITH THE SOTA TRACKERS ON MOTCHALLENGE 16/17/20 TEST SETS. ALL TRACKERS ARE ONLINE-TRACKING

METHODS AND USE PRIVATE DETECTORS

the motion similarity becomes higher since the more false
or inaccurate tracks of T (T D)

t and T (T M)
t can be excluded

by the preceding association T (T D)
t and T (T M)

t with T (GT )
t .

Therefore, our decision coordinator tends to be biased more
toward the motion context than the cardinality one as TDR
decreases. However, when comparing the results of (B1) and
(B2) in Table III, the cardinality similarity should much
contribute to the decision coordinator at the lower TDR.
Eventually, this comparison indicates that our self-supervision
reflecting the performance of an applied detector is key for
decision coordinator learning.

4) Hierarchical Confidence Association: We compare the
effect of our association method as shown in Table IV.
We observe that (C3) using our association improves the
MOTA score by 3.2% compared to (C2) without the associ-
ation. (C3) with TDR=90.2% achieves the better MOTA and
speed compared to the baseline with TDR=100%. We also
find that the cost of using our association is negligible when
compared to (C2) and (C3). It shows that our association
method is indeed an effective method to boost MOT accuracy.

5) Tracking-by-Motion: To compare different TBM meth-
ods, we implement a linear motion model. We estimate
the linear motion for each object by computing the dif-
ference between center positions at the two recent previ-
ous frames from TBD. As shown in Table V, the TBM
using Kalman filtering provides the better performance than
using the linear motion. It also indicates that the quality
of TBM can affect the overall performance more as TDR
decreases.

6) Sensitivity Analysis for θps: To analyze the sensitivity
our Decode-MOT against θps , we train different Decode-MOT
by changing θps and compare their MOTA scores for different
TDRs. As shown in Fig. 5, the MOTA difference is marginal
when TDR ≥ 60%. This means that θps is not a sensitive
parameter when TBD operates frequently. On the other hand,
when TDR < 60%, a high θps = 0.9 shows the steep MOTA
reduction. This is because the decision coordinator is rather
over-fitted since the pseudo labels of the GT G is highly biased
to TD. Also, the decision of our coordinator could be biased
to TM when θps = 0.4. Furthermore, we conduct a sensitivity
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Fig. 11. Qualitative comparisons of the scene contextual learning. We visualize activation maps by applying different attention methods. All images are from
MOTChallenge sets [23]: (a) MOT16-03, (b) MOT16-01, (c) MOT16-07, (d) MOT16-14.

Fig. 12. Qualitative tracking results for our Decode-MOT. All images are from MOTChallenge sets [23]: (a)MOT20-04, (b)MOT16-03, (c)MOT16-06.

analysis for θps in terms of TDR and θdet as shown in Fig. 6.
We observe that the TBD difference is marginal when θdet
is high. However, the TBD difference becomes larger as θdet
decreases. In other word, the low θps = 0.4 shows the lower

TDR when θdet ≤ 0.7 compared to the high θps = 0.9.
It implies that θps can affect TDR and θdet . Therefore, setting
the proper θps is important to avoid the biased results in terms
of TDR and θdet .
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7) Sensitivity Analysis for ξ : We conduct a sensitivity
analysis for the degradation factor ξ . As shown in Fig. 7, the
MOTA variation for different ξ is so marginal. This proves
that our method is not sensitive to ξ .

8) Buffer Size Q: To investigate the effects of Q used in
the scene contextual learning, we evaluate our trackers with
different Q values. For more evaluation, we categorize MOT
sequences into dynamic and static sequences in consideration
of the amount of camera and object movement, and the
similarity between consecutive frames for object cardinality
and motions. As a result, we find out KITTI-13 and TUD-
Stadtmitte are the most dynamic and static ones, respectively.

Figure 8 shows MOTA comparisons for different Q values
on each sequence. For the dynamic sequence, we observe that
using Q = 4 shows the higher AUC score than Q = 8. On the
other hand, for the static sequence, Q = 8 achieves the higher
AUC than Q = 4. It implies that the temporal buffer size Q
relies on the similarity between the consecutive frames.

9) TBD and TBM Mechanism on Static and Dynamic
Scenes: As shown in Fig. 9 (a), we show the variation of
the decision probability f (st ) of the decision coordinator per
frame. We observe that our coordinator tends to produce low
f (st ) more frequently on the dynamic sequence. In Fig. 9 (b),
we show the selected key and current frames at some f (st )

values. Both frames have the similar object cardinality and
motions when f (st ) is high. In Fig. 8, we also mark points
achieving 80% MOTA score over the score with TDR=100%
using a black dotted circle. Those accuracies can be achieved
with the much lower TDR on the static scene. Therefore, the
overall tracking speed can be enhanced much more with low
MOTA loss in the static sequence.

C. Qualitative Comparisons

In order to verify the effects of the scene contextual learning
as described in Sec. III-C, we show the qualitative comparisons
of activation maps with different attention methods as shown
in Fig. 11. To this end, we present the activation maps without
attentions, using the short-term attention only, and using both
the long-term and short-term attentions. For visualizing them,
we apply GradCAM [78] to the feature maps Pt and the
channel weighted feature maps P⋆t , and overlay them on
their current images It . We observe that using both attentions
can capture objects well than other methods. In specific,
in dynamic sequences such as Fig. 11 (c) and (d), using
both attentions can capture objects finer for the rapid scene
context variations compared to using the short-term attention
only. It indicates that our proposed scene contextual learning is
beneficial to learning scene contexts. In some cases, inaccurate
tracking results of our tracker occur as shown in Fig. 10.
We found out that the false negative tracks are made by TBM
for the small objects mostly. Since the small objects have
very ambiguous appearance features, our decision coordinator
would make an inaccurate decision with the low discriminative
features in those scenes. We know that this is still one
of the challenging issues for MOT. This problem could be
resolved by designing the cost-sensitive loss for small objects
or enhancing feature discriminativeness.

D. Comparison With State-of-the-Arts Methods

For comparing the recent trackers, we evaluate our
Decode-MOT on MOT16, MOT17 and MOT20 test sets. For
a fair comparison, we compare ours with the online tracking
methods using private detectors. We set θdet to 0.5 in the
most ablation study and MOT16 and MOT17 comparisons
with SOTA trackers, but we only set it to 0.05 for MOT20.
The reason of using different the θdet is that the mean
crowd density of MOT20 (170.9) is about 5.5 times higher
than ones of MOT16 (30.8) and MOT17 (31.8) sequences as
shown in the related paper [23] and MOT benchmark websites
(https://motchallenge.net/data/MOT20/, accessed on 20 May
2023). It means that many pedestrians appear and disappear
frequently in MOT20 sequences. Therefore, cardinality simi-
larities between consecutive frames in MOT20 are lower than
ones in other sequences (MOT16 and MOT17). It makes our
decision coordinator output a lower decision probability f (st ).
Therefore, we set θdet to 0.05 in order to encourage our
decision coordinator to perform TBM more frequently and
boost the MOT speed further.

As shown in Table VI, our Decode-MOT achieves 73.2%
MOTA and 21.6Hz on the MOT17 test set, which are the
remarkable speeds while achieving the higher MOTA and
HOTA than other methods [25], [65], [67], [68], [69], [75].
In addition, our Decode-MOT shows comparable accuracies
with recent tracking methods [71], [76], [77] while showing
better speed. In MOT16 test sets, we achieve remarkable
accuracies and speed. Only two trackers [22], [71] show higher
accuracies but lower speed compared to ours. In MOT20
test sets, our Decode-MOT shows 67.2% MOTA and 12.2Hz,
which are competitive scores compared to recent tracking
methods. In particular, our tracker generates much more
gains for both speed and accuracy on all the MOT sets
over the recent trackers evaluated with the same Titan Xp
GPU. Figure 12 shows our Decode-MOT tracking results on
MOTChallenge dataset. Our system tracks the most objects
even though the objects are frequently occluded while reducing
the number of detector operation for boosting speed. For
showing more results, we provide the supplementary videos.

VI. CONCLUSION

For real-time and high accurate MOT, we propose a novel
Decode-MOT which can determine the best tracking-by-
detection (TBD) or tracking-by-motion (TBM) mechanism
during onilne MOT. To this end, we present the scene con-
textual learning using long-term attention for generating more
discriminative features between consecutive frames. Because
the TBD/TBM mechanism can be different for the nature
of MOT methods, we propose the self-supervised learning
based on tracking contextual similarities in terms of cardinality
and motion. For the more robust association, we present a
hierarchical confidence association which can reduce the asso-
ciation ambiguity step-by-step. From the extensive ablation
studies and comparisons with the recent methods, we verify
that our method is beneficial to boost the overall speed and
accuracy together. We believe that our work could be an impor-
tant guideline for future real-time MOT methods. Since our
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Decode-MOT reduces the complexity of the MOT algorithm
at the system level, our method could be compatible with
tracking methods aiming at reducing the model complexity.
Therefore, the knowledge distillation [42] and atrous spatial
pyramid pooling [79] could be incorporated into our method,
and we expect great synergy can be made by combining our
method with such lightweight models. In addition, enhancing
the decision coordinator itself is critical for boosting track-
ing accuracy and speed more. Since capturing the context
difference of different frames is an important cue for our
coordinator, we can strengthen the long-term attention learning
with multi-head attention modules [28].
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